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Abstract. General Hamiltonian matrices with tridiagonal block structure and the associated
transfer matrices are investigated in the cases of periodic and scattering boundary conditions.
They arise from tight binding models with finite range hopping in one or more dimensions of
space, in the presence of a Aharonov-Bohm flux or in multichannel scattering. An identity
relating the characteristic equation of the periodic Hamiltonian with that of the transfer matrix
is found, allowing a detailed analysis of the bands. A velocity matrix is defined, with properties
relevant for the band structure, or for the channel structure in the scattering problem.

1. Introduction

Several interesting physical systems are described by Hamiltonians which are directly
formulated as Jacobi matrices. A significative and very investigated class is given by
lattice models for one-dimensional transport with disorder [1-9]. In the simplest version,
the Hamiltonian is the sum of a kinetic term with equal amplitudes for hopping to nearest-
neighbouring sites, and a site-potential term which describes the disorder

(HY)p = Vi1 — V1 + €Y. (11)

The tridiagonal structure is particularly suitable both for the numerical and the theoretical
analysis, the latter being usually based on the powerful concept of transfer matrix. In the
example, given the solution of the eigenvalue equatid ), = E, with certain boundary
conditions, the transfer matrix connects components at different sites via a multiplicative
process with basic step

(N Y _(ea—E -1
(¢:>—Tn(E)<wn_l> Tn<E)—< 1 0). 1.2)

The eigenvalues, 1/z of the transfer matrix' (E) = Ty (E) ... T1(E) for a chain of length
N are related to those of the Hamiltonian matfy, (p) with periodic boundary conditions
Un+1 = €Pyn, Yo = € Py, as it occurs for a ring with a magnetic flux through it, through
the equality [7, 10]

detlE — Hy(p)l =z + } — 2cosp. (2.3)
Z

The first and second derivatives of the energy valBgl) are known as level velocity
and curvature, and describe the sensitivity of the system to changes of boundary conditions,
giving information on the extension of eigenstates [11, 12]. In the transfer matrix description,
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the localization properties are controlled by the eigenvalue® (@) [4,5]. The transfer

matrix is also a useful tool in the scattering problem, where the disordered part has a
finite length and is connected to infinite leads that carry plane waves. The matrix elements
provide the transmission and reflection amplitudes that, in the Landauer approach, are related
to transport properties of the single specimen [4].

The presence of statistical disorder implies the introduction of an ensemble of
Hamiltonians, and the definition of average quantities, like the energy density, or the
Lyapounov exponent for the resulting ensemble of transfer matrices. A relation, named
after Thouless, relates the average Lyapounov exponent, which describes the localization
length of eigenvectors in infinitely long wires, to the energy density [13].

In the transition to higher dimensions, or by allowing hopping to occur among
sites inside a finite range, the Jacobi structure of the Hamiltonians of these systems
is often preserved, with the matrix elements being replaced by square matrices. The
aim of this work is to study in a general framework the properties of Hamiltonians
with tridiagonal block structure, and those of the related transfer matrices, in the cases
of periodic or scattering boundary conditions. However, the random character of such
Hamiltonians, whose description requires the notion of ensemble, is not considered
here: the properties of a single general matrix with the tridiagonal block structure are

investigated.
The Schédinger equationHvy(z) = 9,y (¢) is considered with the following
Hamiltonian,
(H)n = L _ W1+ Hywn + LaVinss (1.4)

where H, and L, are complex matrices of siz&, with the only requirement, = H,f
and detL, # 0. The Hamiltonian is then a block-Jacobi matrix, with diagonal blofks
upper and lower adjacent blocks, and L.

The matricesH, describe a transverse or internal dynamics, and Rhecouple
adjacent transverse sections, aligned in one direction. In the Anderson model on a
hypercubic lattice inD + 1 dimensions, the matrice,, have the structure of Anderson
Hamiltonians in dimensiorD, and matricesl., = —I describe the coupling of nearest-
neighbouring lattice slices [14]. A related disordered model wittorbitals per site
was solved in the limita — oo [15]. In band random matrices, th#, are GOE
or GUE random matrices, and thg, are lower triangular random matrices [16].

In a similar model for mesoscopic fluctuations, tlig are square random matrices
[17,18].

The content of the paper is as follows. In sewti® a conservation law is obtained
from the eigenvalue equation, which plays an essential role in the theory, and will be
interpreted as current conservation in the scattering problem. The transfer matrix is then
introduced, together with the definition of the velocity matrix. For completeness, in section 3
we briefly discuss the Hamiltonian for a finite chain. Of greater interest is the periodic
chain, discussed in section 4, where an identity involving the spectra of the periodic
Hamiltonian and of the transfer matrix is found, which allows a detailed analysis of the
band structure. Section 5 is devoted to the study of the scattering problem. In particular,
the role of the velocity matrix and of closed channels is discussed in the construction of the
transfer matrix for current amplitudes. The main results are summarized in the conclusions,
section 6.



Transfer matrices and tridiagonal-block Hamiltonians 985
2. The basic tools

2.1. A conservation law
The eigenvalue equation f@t, written in block form and with a real energy valug

L' Y1+ Hyly + LaVni = EV, (2.1)

leads to a conservation law of local type, with interesting consequences. By taking the
scalar product with/,, we obtain the relation

YIL, s+ Ul Lo = WI(E — H),
with a real right-hand side. Therefore,:OIm(l/f,le_lwn_l — Ilf,LanI/fn), which implies
that Im( ,LILZ%) does not depend om. Explicitly, up to a factor, this quantity is
C=—-iviz,w, (2.2)

where we have introduced a compound vector that suits the transfer matrix approach, and
a matrix related to the longitudinal dynamics:

. 0o L
\1/,,:(‘@*1) 2n=<_L 0). (2.3)
2.2. The transfer matrix

The eigenvalue equation (2.1) has the structure of a two-term recurrence relation for the
vectorsy, into which ¢ is partitioned, and becomes single term in the compound notation

v, = Tn(E)lI"n—l (24&)

where we introduce the one-step transfer matfix.,E), of size 21/

-1 _ _y-1gt
T(E) = (Lo (B~ H) =Ly Ly (2.40)
I 0
with the property, which follows from the conservation law,
T.(E) £,T,(E) = £,-1. (2.5)

Note that this property, which is derived quite naturally in the block approach, would not
easily show in the case of a one-dimensional system while considering the transfer process
between subsequent sites [19]. It is the block approach that efficiently takes into account
the symmetry property of the Hamiltonian.

By iterating the transfer process, one construck&-step transfer matrix, with reference
to an initial site:

Wy = T(E)¥ T(E) = Tn(E)Ty_1(E) ... To(E). (2.6)

The matrixT (E) is a polynomial of degred’ in the energy parametdt, and for any value
it satisfies the relation

T(EY'SNT(E) = %o (2.60)

which imposes constraints on the matrix coefficients; in particular, the determinant is
independent oft.

The caseXy, = Xy corresponds to interesting situations that may be of physical
relevance: the chain of finite length, the periodic chain and the scattering problem, which
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will be discussed in the next sections. At this stage, it is important to explore the general
spectral properties of matrices of siz&/2hat satisfy the relation
T'ST =% 2.7

with the matrix< having the propertiex’ = — %, detT # 0.

Such matrices form a group, withi~! = =177, If ® is an eigenvector of" with
eigenvaluez, then= & is an eigenvector of f, with eigenvalue 1z. Therefore, botly and
1/z* belong to the spectrum df. From equation (2.7) we obtain

(@/T®))(z/zj —1) =0. (2.8)

This relation describes a property of an important matrix of the theory, which is now
introduced.

2.3. The velocity matrix

Let Z be the diagonal matrix of eigenvalugsof 7', which in general consist gf complex
pairs&, 1/&*, with |£] < 1, and 2 numbers on the complex unit circle, wigh+ v = M.

The feature of having an even number of eigenvalues on the unit circle, which follows just
by counting, is important for the discussion of the bands or the scattering problem. Let us
choose the following partitioning into four subsets:

1 1
g E;"
At this level, the pairing and priming of phases is arbitrary. Lebe the corresponding
matrix whose columns are the eigenvectdrsof 7, so that

T=UzZU L. (2.10)

dr...en £1...8, en. . . én (2.9)

The spectral decomposition and the property (2.7) allow us to introduce a Hermitian matrix
Q, which is significant for the applications,

Q=—-iU'zU (2.11)
with the following property, that corresponds to equation (2.8),
zZ'Qz = Q. (2.12)

Since Z is diagonal, most of the matrix elements §h vanish: Q,.j(ziz;‘ — 1) =0. The
pattern of the matrix depends on the ordering of the eigenvalugs With the choice (2.9)
we obtain

Q= (;’T g;) 2.13)
where the blockd/, V' andy are diagonal matrices of sizd, with main diagonals
V={vy...v,,0...0} V' ={v;...v,,0...0} y=1{0...0,y1...7,}. (2.13)
For future use, we specify the non-zero matrix elements:

vy = —id TP, vl = —idl,, Sdyy, i=1...v (2.14)

]/i = —iCI>1+[Ed>M+v+i l = l . ,0 (2143)

The eigenvalues a2 are thev pairs of real numbers;, v; and the 2 numberst|y;|. By
Sylvester’s law of inertia [20], the matri® has the same signature, defined as the difference
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of the numbers of positive and negative eigenvalues, as the Hermitian mai)ix For a
matrix X with the structure (2.3), the eigenvalues-effx solve.

det(s +ix) = dets> — LTL) = 0. (2.15)

They are+s;, wheres? are the M eigenvalues of the positive Hermitian matrix L.

Therefore, the signature both efiX and< is zero. The distinction between unprimed and
primed phases in the diagonal &f(2.9) is such that the former correspondito> 0 and

the latter correspond to; < 0. These 2 positive and negative values will be interpreted
as velocities, and2 will be named the velocity matrix. A pairing criterion for the phases
p; and p; will be given in the discussion of the band structure of periodic Hamiltonians.

3. The finite chain

For completeness, and to gain some insight into the structure of the transfer matrix, we
briefly consider the case of a Hamiltonian matrix of finite size. The chain of finite lekigth
corresponds to the boundary conditiofig = 0 andyy1 = 0 in the eigenvalue equation
(2.1). The transfer matrix for the chalfE) = Ty (E)Ty_1(E) ... T1(E) is constructed by
settingLy = Lo = I in its first and last matrix factors, which gives the property

T(E) ooT(E) = 02 oy = <? _OI) ) (3.1)

In the transfer matrix appror;\ctn/fn}f;’:1 is an eigenvector with eigenvalue of the matrix

H if
0 _ Y1 (T Ti2
(W) - T(E)< 0 ) T(E) = <T21 Tzz) (3.2)

which means that/; is an eigenvector of the block(E);1, of size M, with eigenvalue
0. Therefore, deff — H] = 0 whenever def'(E);; = 0. More precisely, since both
determinants are polynomials i of degreeN M with the same roots, one can write

detT (E)y; = det[L; ... Ly_1] tdet[E — H]. (3.3)

By construction, beside$ (E)11 = {Ty ... T1}11, We haveTr; = {Ty_1...T1}11, Ti2 =
—L TN Ty 1. Tohn and Top = —L7Li{Ty 1. .. To}11. ThereforeTip, Toy and Tz
are polynomial matrices i of degreeN — 1, N — 1 andN — 2, respectively.

4. The periodic chain

To investigate the connection between the spectrum of the transfer matrix and the spectrum
of the Hamiltonian, one must consider the interesting case of periodic Hamiltonian, with
periodN: L,.y = L,, H,.ny = H,.

By Bloch’s construction, the spectral problem faf corresponds to that of a family
of matrices, parametrized by a continuous paramgter [—m, 7]. The procedure is the
following: since the Hamiltonian commutes with té-block shift operator, we look for
eigenvectors of{ which are also eigenvectors of the shift operator

Ynin = ei”% — TP (41)

In applications, the requirement of periodicity corresponds to the topology of a ring, and
the phase change (4.1) corresponds to a magnetic flux through it, measured by the Bloch
parameterp.
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Choosing an origin, for each value pf the eigenvalue equation (2.1) with the above
constraint corresponds to that of the following matrix, with= €7, incorporating the
boundary condition implied by (4.1):

H L 0 .. 0 (1)L}
Ll Hy L, 0 0
0 L), Hy Ly O
H(z) = 0 ... : (4.29)
i Ly 0
0 0 Ly, Hyv1 Ly
zLy O o Li_, Hy

By introducingHo, the matrix with corners removed, add the matrix with the lower left
corner equal to the block y, we also write
1.
H(z) =Ho+zL+ ZU' (4.20)

It is useful to let bothy and E be complex numbers. We construct the following transfer
matrix:

-1 —177 -1 Al
T(E) = (LN (& = v _LNOLN—1>...<L1 E-H) =l LN) 4.3)

with the property
i
T(EN'ST(E)=% > = < 0 LN> . (4.4)
—Ly O

When E is complex, ifz is an eigenvalue of (E), 1/z* is an eigenvalue of (E*).

4.1. The dual identities

We now derive the identities between the characteristic equations of the m&trixand
of the transfer matrix’ (E).
A N-block column vectory = {y,}_, is an eigenvector of{(z) with eigenvaluek if

and only if
YN+l — T(E <I/f1> YNyl =2Y1 45
( 12N ) ) Yo Yo = (I/2)y¥n. (4-5)

This means that is an eigenvalue of’ (E), with eigenvectord of block components/;
ando. We, therefore, have the dual relation

detlE — H(z)] =0 < det[l'(E) —z] = 0. (4.6)

The relation can be turned into an equality by noting: (i) the characteristic polynomial
det[E —H(z)] has degre&V M in the variableE with coefficient of the highest power equal

to one; (ii) though the transfer matrik(E) has size 2/, and is obtained as a product of

N matrices linear inE, it can be shown by induction that d&{{E) — z] is a polynomial of
degreeN M in E, with the following coefficient of the highest power i

(—)MdetlLy ... L% 4.7)
One can, therefore, write the interesting identity

det[l' (E) —z] = (—2)M det[Ly ... L]t det[E — H(z)]. (4.89)
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In this relation we substituté; and z with E* and z*, and take the complex conjugate.
Noting that, by equation (4.4 (E*)! is similar to T(E)~%, and H(z*)' = H(1/z), we
obtain

det[l' (E)™* — z] = (—z)" det[L, ... L]~ det[E — H(1/2)]. (4.80)

Taking the product of determinants.84, b), we obtain a relation which is valuable for
discussing the band structure of the periodic Hamiltonian:

N
det|:T(E) +T(E)™t - (z + :)} =[] detLi| 2 detlE — H(2)] det[E —H (j)} .
. i .

(4.5)

The two determinants in the right-hand side are coincident in the particular but important
cases of periodic and antiperiodic boundary conditipes+1. They always coincide when
the matricesH, and L,, are real, since in this cadé(1/z) = H(z)".
The equation generalizes the result (1.3), contained in [7, 10] for Jacobi matcesl.
For this case, in the appendix, a useful formula for level velocities is given.

4.2. Level dynamics

The NM eigenvalues ofH(z) are functions of the parameterwhose derivatives have
interesting applications [21-23]. The first derivative is the level velocity, measuring the
current in the ring problem, or being the group velocity in the scattering problem. The
second derivative is the curvature. In this section it is shown that the first derivative, when
the eigenvalueE (z) is real, is an entry of the velocity matrix.

If E is an eigenvalue of(z), E* is an eigenvalue of{(1/z*), since one matrix is the
Hermitian conjugate of the other. Let us write the eigenvalue equations

H(z)Y = EYr HA/z)Y = E*Y (4.9)

with eigenvectors) = {lp,,}fj’:1 andy = {y, ,11":1. We take the logarithmic derivative of
the first equation

1. d dE d
(zﬁ - /:') VYV+H@z -V =z2—V+EQ@zV
z dz dz dz
and multiply on the left bwsf. Using the second eigenvalue equation we obtain
dE - - 1
zd—z(x/ﬁx/f) =y <z£ —~ Z.c*) V. (4.10)

Let us normalize to one the scalar product in the left-hand side. Due to the simple structure
of the matrix £, the right-hand side simplifies to

“t 1oy 4
Yy Ly — ;‘ﬁlLNWN-

Using the boundary conditiongy = zvo, ¥v = (1/z*)¥0, and denoting byd the
eigenvector of (E) with eigenvalue;, of components/; andy, and by® the eigenvector
of T(E*) with eigenvalue 1z*, of components); andy, we obtain

de - - .
rg = oLy — YL o = —d' T 0. (4.11)
For a real value of the energy, we recognize the non-zero matrix elements of the velocity
matrix (2.14).



990 L Molinari

In the case; = €7, the matrices{(€”) andH(e"'?) are Hermitian and each haveM
real eigenvalues, respectively, described by functiBfg) and E; (— p) spanning the same
set of NM energy bands, ag varies in [, 7].

Given an energy valu&' inside a band of labej, recall that the transfer matrik (E)
admits at least one pair of eigenvalues on the unit cirtfeard &', such that bottH(e?)
andH(€”) have the eigenvalug: E;(p) = E;(p’) = E, respectively, yielding a positive
and a negative velocity

f;(p) = —iolze; =y O(I;(ﬂ/) =—i0juE®jy =v;. (412)
The velocities describe the istantaneous speeds by which, the band; is covered in
the two directions. The appearance of @genvalues on the unit circle corresponds to the
overlapping inE of v bands. These properties are now discussed with the help of the dual
identities.

4.3. Band structure of the spectrum

The dual identities (4.8) provide the connection among the eigenvalues of Hamiltonian
matrices and transfer matrices: Af is an eigenvalue oH(z), z is an eigenvalue of (E)
andz + 1/z is an eigenvalue of (E) + T(E)~1. The latter eigenvalues are useful for the
determination of the band structure of the spectrum of the periodic Hamiltonian.

Taking into account the results of section 2, whis real, the matrixt’ (E)+T (E) ™! =
U(Z + Z~HU ! has eigenvalues

M(E) =2cosp Ajym(E) =2cosp’ j=1l...v
Mot (E) :$j+§j_l:)"v+j+M(E)* j=1...p.

If A;(E) = 2cosp and 1< j < v, E is an eigenvalue ot (€”) with positive velocity

v;. On the other hand, there is also a valpfesuch thatE is an eigenvalue of{(€?"),

since both phases appear in the spectrurii @). Then, since the latter phase involves a
negative velocity, there is an eigenvalug y (E) = 2 cosp’ with negative velocityv; .

The structure of bands is determined by the behaviour of these pairs of eigenvalues, as is
now discussed.

It is convenient to plot the functions;(E) in the E-x plane. Whenz = €”, both
matricesH(z) and’H(1/z) are Hermitian and hav¥ M real eigenvalueg; (p) andE;(—p).
This implies that the line. = 2 cosp must, for anyp, have 2V M intersections with the
graphs of the functions;(E). None of such functions can have an extremum inside the
strip |A| < 2, because this would violate the existence &fAZ intersections for alp.

The strip is then crossed byV2V lines that correspond to portions of the graphs of an
even number of functions; (E).

On the other hand, from the knowledge of the propertieB(@), if E is any eigenvalue,
it is the projection on theE axis of at least one pair of points, given by the intersections
of the pair of linesrh = X;(E) and A = X;u(E), respectively, withx = 2cosp and
A = 2cosp’. The number of intersections may be greater than two, but always even.

When p = 0 or p = +m, the eigenvalues of the matricés(€”) and H(e '?) are
coincident. TheNM pairs of linesh = A;(E) andA = Aj;u(E), when reaching from
below the upper border of the strip= 2, join at theNM points whose abscissae are the
N M eigenvalues of{(1). The same pairs join when reaching from above the lower border
A = —2, in points of abscissa given by the eigenvalue${¢f-1). Between these extrema,
each paira; and ;) forms a loop whose projection on tl#e axis determines a band.

(4.13)
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The equations determining the bands produced by the pair of eigenvalaesi 2 »
are two, providing different dynamics for the eigenvaluesg?”):

2cosp =A(E(p)) pels 2cosp = Ajym(E(p)) pels (4.14)

whereZ, is the interval 0< p < &, andZ_ is the interval-n < p < 0, and the upper
sign occurs fori;(E) < 0. The velocities are then respectively positive and negative:

-1 -1
9EPD) _ _inp <%> d’z(”) = —2sinp (W) . (4.15)
E=E(p) p E=E(p)

This discussion shows that the eigenvalue® @f) on the unit circle, as functions &, are
naturally paired. This follows from the pairing of the eigenvalued ¢6£) + T (E)~! in the
strip |A] < 2 which is determined by the band structure of the energy. The pairing can be
traced out of the strip, since they become complex conjugated, until eventually re-entering
the strip at a common point.

The case wher& (E) is real is considerably simpler, singé = —p. Then, the lines
(4.14) coincide, and velocities fgr > 0 andp < 0 are opposite.

5. The scattering problem

In a scattering problem, the scattering region is confined to a set of bloeksl... N,
outside which we assume, with enough generality, that the infinite nfattras a constant
structure.

... Lo
Ly Ho Lo
L Hy Lo
Ly H L
Ll H . (5.1)
.. Ly
L, Hy Lo
Ll Hy Lo

Li Ho
The two infinite tails, which model the ‘leads’, must sustain propagating states which
enable us to construct ingoing and outgoing scattering states. Such states, solutions of
the eigenvalue equation (2.1) in the left- and right-hand sides of the scatterer, are connected
by the transfer matrix for the scatterE(E) = Ty (E) ... T1(E). The matrix depends on the
coupling to the free dynamics, since it contains the matgin its first and last factor. This
dependence precisely endows the transfer matrix with the property, in general not shared
by the single matrix factors,

T(E) ST (E) = %o o= (_(20 LOO) (5.2)

where X is provided by the free part of the Hamiltoniaﬁé = —3p and defzy # 0.

5.1. The free dynamics

The preliminary full understanding of the free dynamics is essential for the scattering
problem. We shall find that, at a given energy, the number of open channels, corresponding
to plane waves, is the same for the two directions of motion. In the basis of plane waves,
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the velocity matrix replaces the matriy, providing the interpretation of the law (2.2) as
flux conservation.

Let us consider the Sobdinger equation with Hamiltoniat, with scatterer removed
and replaced by a sequence i and Ly matrices:

LiY,—1(t) + HoWn (1) + Lowra(t) = i, (1). (5.3)
The general solution
M T .
Ya®) =Y | dpci(p)u;(p)erEi®H) (5.4)
j=17-7

is a linear superposition of plane waves whergp) and E;(p) are provided by the
eigenvalue problem of the Hermitian matrix, which is the particular ciise= 1 of
equation (4.8):

{Ho+ €7 Lo+ e " Liyu;(p) = E;(p)u;(p). (5.5)

For any p there areM real energy value;(p) which are distributed in bands, and
corresponding orthonormal eigenvectars(p). The bands may overlap, and together
constitute the spectrun§ of the free dynamics. The group velocity of a wave packet
is given by
9E;(p)

ap
Since bands may overlap for a given allowed valief the energy, there are in general
2v(E) values of momentg; and p}, yielding positive and negative velocities, such that
E(p;) = E(p}) = E. We callv(E) the number of ‘channels’, which counts the number of
propagating states with given energy, in one direction.

However, the transfer matrix approach, which is convenient for the scattering problem,

involves solutions with fixed energy. The general solution (5.4) may be rewritten as

v (p) = =iu;(p)'(€" Lo — € Lu;(p). (5.6)

Yn () = f dE ey, (E) (5.7)
wherey, (E) is a physi;:gal solution of

Liyn-1(E) + Hoa(E) + Loy 1(E) = Ev, (E) (5.89)
and, as such, in the two-vector formalism, is given by

U, (E) = To(E)" Vo (5.80)

where ¥ is a vector with a structure to be discussed later, that ensures the requirement
of providing a ‘physical solution’, andy(E) is the free transfer matrix evaluated at an
admissible value of the energy € S

-1 —171
e )

Besides physical states, there are also non-physical ones which, when the scatterer is
included in the lattice, must be considered. We, therefore, study the spectral properties
of To(E). From

To(E) SoTo(E) = o (5.10)

we know that the spectrum d§(E) containsv pairs of non-zero eigenvalue¥ieand &,
andp complex pairss; and Y&, wherev + p = M and we assumég;| < 1.

(5.9)
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Writing explicitly the eigenvalue equation fofp(E), one finds that the column
eigenvector ofTy(E), with eigenvaluez, has upperM components given by a vecton
and lowerM components given by, solution of the equation with fixed

H(z)u = Eu H(z) = Ho+zLo + z 'L}, (5.11)

In particular, we have the pairs of eigenvectors;; and «; of equation(5.5), with
eigenvalues'® and &i. The remaining pair§; and Ye&r, with |&] < 1, have eigenvectors
w; andw;. From equation (5.11) and the reality 8f we immediately obtain the property
that both.f;i(ijow,-) and ],/gl.*(wﬁLow;) are real. Therefore, in the cadg = Lg, the
eigenvalues offy(E) that are not on the unit circle, are real.

Let us introduce the ordering (2.9) of eigenvalues and eigenvectors. THi&h =
UZU~1 with

_(Z1 0
Z= ( 0 Zz) (5.129)
an ar
7 = gr Zy = er (5.12)
& 1/&
and U is the matrix of column eigenvectors, built from the eigenvectors of (5.11):
U = Uy, WL .. W
U= (U]_Zl U222> 1 (”;I. ! il. ,/o) (5.13)
Uy Uz Up =(uy...u,, wy.. .w).
The general solution of (5.8) is then
v ] - Ji
Va(E) =Y (@ &P™u; + b erimul) + > (a8 w; + by (1) " w). (5.14)
j=1 j=1

The first sum involves physical states with positive and negative velocities, that contribute
to propagation. The second sum is divergent for an unbounded chain, but once the scatterer
is in place, it will provide exponential tails leaving the scatterer. In the compound notation,
introducing a vector of 2 amplituesA, the solution (5.14) gains a compact form:

. a a® p»
W, =UZ"A A=<b> a:(a(p)> b:(b(p)>. (5.15)

From the spectral decomposition of the transfer malfyiE) = UZU 2, and the property
(5.10) which also holds for powers of the transfer matrix, we construct the velocity matrix

Qo= —iUTZU (ZH'QpZ" = Q. (5.16)

The diagonal elements andv; are precisely the positive and negative group velocities of
the channels with momentg and p..

In the case thatdy, and L, are real matrices we have’ = —p, the energies are
symmetric functions of the momentuiy (p) = E;(—p), and accordingly; = —v;. This
corresponds to the property of time-reversal invariance of the free dynamics. Note that

u; = uj by taking the transposed of equation (5.5).
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5.2. Current conservation

When the scatterer is included, the solutions of the eigenvalue equation (2.1) at the left and
the right of the scatterer may contain a contribution that decays exponentially away from
the scatterer. In the compound notation, the left and right solutions are of the type (5.15)

wk=uzAt AL = (Z) a” =0 n<O0 (5.17)
WR = yz" AR AR = (2) d® =0 m>N. (5.17)

The restrictions are needed to avoid the exponentially diverging parts, and are responsible
for an interesting interpretation of the conservation law

(WHI Sewh = (WR) I sewk,
In terms of amplitudes they read
(AHTQoA" = (AR QpAR. (5.18)

Specifying the components, we obtain a law of current conservation, where no contribution
comes from the non-propagating sector:

(al” Pv; + 15 Po)) = (et Pv; + 1d"120)). (5.19)
j=1 j=1

J

The left and right vectors are related by the transfer matrix of the scatidyes 7(E)Wg.
For the amplitudes we obtain the linear relation

AR = M(E)A" ME)=zNuT(E)U (5.20)
where bothM (E) andU 1T (E)U have the property
M(E)'QoM(E) = Qo. (5.21)

5.3. The transmission and reflection matrices

Since some components in the amplitude vectdtsaind A~ have value zero and, moreover,
we are not interested in the amplitudes of exponential tails, only a reduced transfer matrix
is required for the computation of scattering quantities. Let us introduce the partitions

M, M M»Y M
M(E) = (M; Mj) My = <sz MZ’”) (5.22)

where, for example)s}” is the submatrix of size x v of M;. From the relatiomR = M A"
we obtain the linear relation for the scattering components:

O a®
<d<v> =Ms | po
M;s = <Mf” = M (MM My — szp(pr)le”>

M3 = M) ML MG — M)

If all channels are open, the matrids coincides with M. As a consequence of
equation (5.19), the matrids has the property

0 0
M}(B v/>Ms=<8 v/) (5.24)

(5.23)
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wherev andv’ are the diagonal matrices of the positive and negative velocities, respectively.
The matrix blocks of\/g are directly related to the transmission matriand the reflection
matrix 7 for amplitudes. In the scattering processes with incoming wave from the left and
from the right respectively, we define

W =faq® dV =0 b =ftg™ (5.2%)
W = fRg® a" =0 p» = Rg™, (5.25)

To obtain a unitary scattering matrix, or define the conductance of the scatterer, one must
consider the amplitudes of the incoming and outgoing fluxes in the various open channels,
at the left and the right of the scatterer:

.in,L .outL /
]im :ai(v) T}i Jiout =bfv) _U;

JOUR = ™ sy jMR=a® /. (5.26)
The flux amplitudes are related by the transfer matrix
_ -1 _(vv O
with the symplectic property corresponding to flux conservation
FT03F = 03 o3 = (é _0[) . (527b)

The matrixF is the canonical transfer matrix for the computation of transport quantities, like
conductance [24, 25], since it takes into account the channel velocities and the possibility
of closed channels.

From the matrix ¥ one obtains the transmission and reflection matrices for flux
amplitudes, which enter as blocks in a unitary scattering matrix, and are simply related
to those for amplitudes (5.25)

L= L2 12 b= (—v) W22 (5.28)

R = (=)~ V2R (=) L/2 PR =y V2R (Y2, (5.28)

6. Conclusions

The motivation of this paper was to identify and study some basic ingredients common
to many mathematical models for the description of quantum transport of a single particle
in the presence of disorder. The process of ensemble average is usually a forward step
that follows the identification of observable quantities that pertain to the single specimen.
A single general Hamiltonian matrix with tridiagonal structure made of square blocks has
therefore been considered. Some results of this paper, being very general, may also prove
useful for other physical applications.

The relationship between the energy spectrum with the spectrum of the corresponding
transfer matrix has been investigated, deriving ‘dual identities’ (4.8) among the characteristic
polynomials of the two matrices, in the case of periodic boundary conditions, generalizing
an identity known for the one-dimensional case [7,10]. These relations allow the study of
the band structure of the Hamiltonian and the level dynamics, which relates to observable
guantities of the system, is relevant for the Thouless approach to conductance and, by
taking ensemble average over disorder, have interesting universal properties for velocity
correlations and curvatures [23]. It is hoped that the dual identities may be useful in the
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study of the difficult and important problem of the statistical properties of transfer matrix
eigenvalues, given those of the Hamiltonian.

It has been shown that, for closed, periodic or scattering boundary conditions, the transfer
matrix of the whole chain has a generalized symplectic property, which generally does not
hold for the single one-step factors of the transfer matrix. This property allows one to
construct a Hermitean velocity matrix, with an even number of non-zero diagonal elements
providing pairs of level velocities with opposite sign. In a scattering process they coincide
with group velocities of wave packets travelling in opposite directions. The velocity matrix
enters in the relation giving the generalized symplectic property for the transfer matrix for
scattering amplitudes both for closed (non-propagating) and open channels. The procedure
to restrict the transfer process to open channels only has been shown, in accordance with
the usual scattering matrix approach.
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Appendix

When the blocks are not matrices but numbevs £ 1), we recover the usual Jacobi
matrices of one-dimensional models. The transfer matrix issa2matrix. Letting the
off-diagonal elements in the Hamiltonian be all equal to 1 for simplicity, the dual relation
(4.8) with z = €7 gives equation (1.3), obtained by Last [7]. With simple steps, one can
obtain the level velocities and the curvatures in the origin:

vi(p) = 9 __ =0
P =g, = [T;[Ei(p) — Ej(p)]
dzE,‘ 1
K; 0=—-0=- / ’ M
) dp? © [T;[E:i(0) — E;(0)] ay

The expression of curvature coincides with the produat v of the first and last components
of the eigenvectory of the matrixH(0) with energyE; [12] and explains the meaning of
curvature or of the bandwidth, to which curvature is related, as measures of localization [8].
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