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Abstract. General Hamiltonian matrices with tridiagonal block structure and the associated
transfer matrices are investigated in the cases of periodic and scattering boundary conditions.
They arise from tight binding models with finite range hopping in one or more dimensions of
space, in the presence of a Aharonov–Bohm flux or in multichannel scattering. An identity
relating the characteristic equation of the periodic Hamiltonian with that of the transfer matrix
is found, allowing a detailed analysis of the bands. A velocity matrix is defined, with properties
relevant for the band structure, or for the channel structure in the scattering problem.

1. Introduction

Several interesting physical systems are described by Hamiltonians which are directly
formulated as Jacobi matrices. A significative and very investigated class is given by
lattice models for one-dimensional transport with disorder [1–9]. In the simplest version,
the Hamiltonian is the sum of a kinetic term with equal amplitudes for hopping to nearest-
neighbouring sites, and a site-potential term which describes the disorder

(Hψ)n = −ψn+1 − ψn−1 + εnψn. (1.1)

The tridiagonal structure is particularly suitable both for the numerical and the theoretical
analysis, the latter being usually based on the powerful concept of transfer matrix. In the
example, given the solution of the eigenvalue equation(Hψ)n = Eψn with certain boundary
conditions, the transfer matrix connects components at different sites via a multiplicative
process with basic step(

ψn+1

ψn

)
= Tn(E)

(
ψn
ψn−1

)
Tn(E) =

(
εn − E −1

1 0

)
. (1.2)

The eigenvaluesz, 1/z of the transfer matrixT (E) = TN(E) . . . T1(E) for a chain of length
N are related to those of the Hamiltonian matrixHN(p) with periodic boundary conditions
ψN+1 = eipψ1, ψ0 = e−ipψN , as it occurs for a ring with a magnetic flux through it, through
the equality [7, 10]

det[E −HN(p)] = z + 1

z
− 2 cosp. (1.3)

The first and second derivatives of the energy valuesEi(p) are known as level velocity
and curvature, and describe the sensitivity of the system to changes of boundary conditions,
giving information on the extension of eigenstates [11, 12]. In the transfer matrix description,

0305-4470/97/030983+15$19.50c© 1997 IOP Publishing Ltd 983



984 L Molinari

the localization properties are controlled by the eigenvalues ofT (E) [4, 5]. The transfer
matrix is also a useful tool in the scattering problem, where the disordered part has a
finite length and is connected to infinite leads that carry plane waves. The matrix elements
provide the transmission and reflection amplitudes that, in the Landauer approach, are related
to transport properties of the single specimen [4].

The presence of statistical disorder implies the introduction of an ensemble of
Hamiltonians, and the definition of average quantities, like the energy density, or the
Lyapounov exponent for the resulting ensemble of transfer matrices. A relation, named
after Thouless, relates the average Lyapounov exponent, which describes the localization
length of eigenvectors in infinitely long wires, to the energy density [13].

In the transition to higher dimensions, or by allowing hopping to occur among
sites inside a finite range, the Jacobi structure of the Hamiltonians of these systems
is often preserved, with the matrix elements being replaced by square matrices. The
aim of this work is to study in a general framework the properties of Hamiltonians
with tridiagonal block structure, and those of the related transfer matrices, in the cases
of periodic or scattering boundary conditions. However, the random character of such
Hamiltonians, whose description requires the notion of ensemble, is not considered
here: the properties of a single general matrix with the tridiagonal block structure are
investigated.

The Schr̈odinger equationHψ(t) = i∂tψ(t) is considered with the following
Hamiltonian,

(Hψ)n = L
†
n−1ψn−1 +Hnψn + Lnψn+1 (1.4)

whereHn andLn are complex matrices of sizeM, with the only requirementHn = H
†
n

and detLn 6= 0. The Hamiltonian is then a block-Jacobi matrix, with diagonal blocksHn,
upper and lower adjacent blocksLn andL†

n.
The matricesHn describe a transverse or internal dynamics, and theLn couple

adjacent transverse sections, aligned in one direction. In the Anderson model on a
hypercubic lattice inD + 1 dimensions, the matricesHn have the structure of Anderson
Hamiltonians in dimensionD, and matricesLn = −I describe the coupling of nearest-
neighbouring lattice slices [14]. A related disordered model withn orbitals per site
was solved in the limitn → ∞ [15]. In band random matrices, theHn are GOE
or GUE random matrices, and theLn are lower triangular random matrices [16].
In a similar model for mesoscopic fluctuations, theLn are square random matrices
[17, 18].

The content of the paper is as follows. In section 2 a conservation law is obtained
from the eigenvalue equation, which plays an essential role in the theory, and will be
interpreted as current conservation in the scattering problem. The transfer matrix is then
introduced, together with the definition of the velocity matrix. For completeness, in section 3
we briefly discuss the Hamiltonian for a finite chain. Of greater interest is the periodic
chain, discussed in section 4, where an identity involving the spectra of the periodic
Hamiltonian and of the transfer matrix is found, which allows a detailed analysis of the
band structure. Section 5 is devoted to the study of the scattering problem. In particular,
the role of the velocity matrix and of closed channels is discussed in the construction of the
transfer matrix for current amplitudes. The main results are summarized in the conclusions,
section 6.
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2. The basic tools

2.1. A conservation law

The eigenvalue equation forH, written in block form and with a real energy valueE,

L
†
n−1ψn−1 +Hnψn + Lnψn+1 = Eψn (2.1)

leads to a conservation law of local type, with interesting consequences. By taking the
scalar product withψn we obtain the relation

ψ†
nL

†
n−1ψn−1 + ψ†

nLnψn+1 = ψ†
n(E −Hn)ψn

with a real right-hand side. Therefore, 0= Im(ψ†
nL

†
n−1ψn−1 − ψ

†
n+1Lnψn), which implies

that Im(ψ†
n+1L

†
nψn) does not depend onn. Explicitly, up to a factor, this quantity is

C = −i9†
n6n9n (2.2)

where we have introduced a compound vector that suits the transfer matrix approach, and
a matrix related to the longitudinal dynamics:

9n =
(
ψn+1

ψn

)
6n =

(
0 L

†
n

−Ln 0

)
. (2.3)

2.2. The transfer matrix

The eigenvalue equation (2.1) has the structure of a two-term recurrence relation for the
vectorsψn into whichψ is partitioned, and becomes single term in the compound notation

9n = Tn(E)9n−1 (2.4a)

where we introduce the one-step transfer matrix,Tn(E), of size 2M

Tn(E) =
(
L−1
n (E −Hn) −L−1

n L
†
n−1

I 0

)
(2.4b)

with the property, which follows from the conservation law,

Tn(E)
†6nTn(E) = 6n−1. (2.5)

Note that this property, which is derived quite naturally in the block approach, would not
easily show in the case of a one-dimensional system while considering the transfer process
between subsequent sites [19]. It is the block approach that efficiently takes into account
the symmetry property of the Hamiltonian.

By iterating the transfer process, one constructs aN -step transfer matrix, with reference
to an initial site:

9N = T (E)90 T (E) = TN(E)TN−1(E) . . . T1(E). (2.6a)

The matrixT (E) is a polynomial of degreeN in the energy parameterE, and for any value
it satisfies the relation

T (E)†6NT (E) = 60 (2.6b)

which imposes constraints on the matrix coefficients; in particular, the determinant is
independent ofE.

The case60 = 6N corresponds to interesting situations that may be of physical
relevance: the chain of finite length, the periodic chain and the scattering problem, which
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will be discussed in the next sections. At this stage, it is important to explore the general
spectral properties of matrices of size 2M that satisfy the relation

T †6T = 6 (2.7)

with the matrix6 having the properties6† = −6, det6 6= 0.
Such matrices form a group, withT −1 = 6−1T †6. If 8 is an eigenvector ofT with

eigenvaluez, then68 is an eigenvector ofT †, with eigenvalue 1/z. Therefore, bothz and
1/z∗ belong to the spectrum ofT . From equation (2.7) we obtain

(8
†
i68j )(z

∗
i zj − 1) = 0. (2.8)

This relation describes a property of an important matrix of the theory, which is now
introduced.

2.3. The velocity matrix

Let Z be the diagonal matrix of eigenvalueszi of T , which in general consist ofρ complex
pairsξ , 1/ξ ∗, with |ξ | < 1, and 2ν numbers on the complex unit circle, withρ + ν = M.
The feature of having an even number of eigenvalues on the unit circle, which follows just
by counting, is important for the discussion of the bands or the scattering problem. Let us
choose the following partitioning into four subsets:

eip1 . . .eipν ξ1 . . . ξρ eip′
1 . . .eip′

ν
1

ξ ∗
1

. . .
1

ξ ∗
ρ

. (2.9)

At this level, the pairing and priming of phases is arbitrary. LetU be the corresponding
matrix whose columns are the eigenvectors8i of T , so that

T = UZU−1. (2.10)

The spectral decomposition and the property (2.7) allow us to introduce a Hermitian matrix
�, which is significant for the applications,

� = −iU †6U (2.11)

with the following property, that corresponds to equation (2.8),

Z†�Z = �. (2.12)

SinceZ is diagonal, most of the matrix elements in� vanish: �ij (ziz∗
j − 1) = 0. The

pattern of the matrix depends on the ordering of the eigenvalues inZ. With the choice (2.9)
we obtain

� =
(
V γ

γ † V ′

)
(2.13a)

where the blocksV , V ′ andγ are diagonal matrices of sizeM, with main diagonals

V = {v1 . . . vν, 0 . . .0} V ′ = {v′
1 . . . v

′
ν, 0 . . .0} γ = {0 . . .0, γ1 . . . γρ}. (2.13b)

For future use, we specify the non-zero matrix elements:

vi = −i8†
i68i v′

i = −i8†
M+i68M+i i = 1 . . . ν (2.14a)

γi = −i8†
ν+i68M+ν+i i = 1 . . . ρ. (2.14b)

The eigenvalues of� are theν pairs of real numbersvi , v′
i and the 2ρ numbers±|γj |. By

Sylvester’s law of inertia [20], the matrix� has the same signature, defined as the difference
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of the numbers of positive and negative eigenvalues, as the Hermitian matrix−i6. For a
matrix6 with the structure (2.3), the eigenvalues of−i6 solve.

det(s + i6) = det(s2 − L†L) = 0. (2.15)

They are±si , where s2
i are theM eigenvalues of the positive Hermitian matrixL†L.

Therefore, the signature both of−i6 and� is zero. The distinction between unprimed and
primed phases in the diagonal ofZ (2.9) is such that the former correspond tovi > 0 and
the latter correspond tov′

i < 0. These 2ν positive and negative values will be interpreted
as velocities, and� will be named the velocity matrix. A pairing criterion for the phases
pi andp′

i will be given in the discussion of the band structure of periodic Hamiltonians.

3. The finite chain

For completeness, and to gain some insight into the structure of the transfer matrix, we
briefly consider the case of a Hamiltonian matrix of finite size. The chain of finite lengthN

corresponds to the boundary conditionsψ0 = 0 andψN+1 = 0 in the eigenvalue equation
(2.1). The transfer matrix for the chainT (E) = TN(E)TN−1(E) . . . T1(E) is constructed by
settingLN = L0 = I in its first and last matrix factors, which gives the property

T (E)†σ2T (E) = σ2 σ2 =
(

0 −I
I 0

)
. (3.1)

In the transfer matrix approach,{ψn}Nn=1 is an eigenvector with eigenvalueE of the matrix
H if (

0
ψN

)
= T (E)

(
ψ1

0

)
T (E) =

(
T11 T12

T21 T22

)
(3.2)

which means thatψ1 is an eigenvector of the blockT (E)11, of sizeM, with eigenvalue
0. Therefore, det[E − H] = 0 whenever detT (E)11 = 0. More precisely, since both
determinants are polynomials inE of degreeNM with the same roots, one can write

detT (E)11 = det[L1 . . . LN−1]−1 det[E − H]. (3.3)

By construction, besidesT (E)11 = {TN . . . T1}11, we haveT21 = {TN−1 . . . T1}11, T12 =
−L−1

1 L
†
0{TNTN−1 . . . T2}11 and T22 = −L−1

1 L
†
0{TN−1 . . . T2}11. ThereforeT12, T21 and T22

are polynomial matrices inE of degreeN − 1, N − 1 andN − 2, respectively.

4. The periodic chain

To investigate the connection between the spectrum of the transfer matrix and the spectrum
of the Hamiltonian, one must consider the interesting case of periodic Hamiltonian, with
periodN : Ln+N = Ln, Hn+N = Hn.

By Bloch’s construction, the spectral problem forH corresponds to that of a family
of matrices, parametrized by a continuous parameterp ∈ [−π, π ]. The procedure is the
following: since the Hamiltonian commutes with theN -block shift operator, we look for
eigenvectors ofH which are also eigenvectors of the shift operator

ψn+N = eipψn − π 6 p 6 π. (4.1)

In applications, the requirement of periodicity corresponds to the topology of a ring, and
the phase change (4.1) corresponds to a magnetic flux through it, measured by the Bloch
parameterp.
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Choosing an origin, for each value ofp, the eigenvalue equation (2.1) with the above
constraint corresponds to that of the following matrix, withz = eip, incorporating the
boundary condition implied by (4.1):

H(z) =



H1 L1 0 . . . 0 (1/z)L†
N

L
†
1 H2 L2 0 0

0 L
†
2 H3 L3 0

0 . . .

. . . LN−2 0
0 0 L

†
N−2 HN−1 LN−1

zLN 0 0 L
†
N−1 HN


. (4.2a)

By introducingH0, the matrix with corners removed, andL, the matrix with the lower left
corner equal to the blockLN , we also write

H(z) = H0 + zL + 1

z
L†. (4.2b)

It is useful to let bothz andE be complex numbers. We construct the following transfer
matrix:

T (E) =
(
L−1
N (E −HN) −L−1

N L
†
N−1

I 0

)
. . .

(
L−1

1 (E −H1) −L−1
1 L

†
N

I 0

)
(4.3)

with the property

T (E∗)†6T (E) = 6 6 =
(

0 L
†
N

−LN 0

)
. (4.4)

WhenE is complex, ifz is an eigenvalue ofT (E), 1/z∗ is an eigenvalue ofT (E∗).

4.1. The dual identities

We now derive the identities between the characteristic equations of the matrixH(z) and
of the transfer matrixT (E).

A N -block column vectorψ = {ψn}Nn=1 is an eigenvector ofH(z) with eigenvalueE if
and only if (

ψN+1

ψN

)
= T (E)

(
ψ1

ψ0

) {
ψN+1 = zψ1

ψ0 = (1/z)ψN.
(4.5)

This means thatz is an eigenvalue ofT (E), with eigenvector8 of block componentsψ1

andψ0. We, therefore, have the dual relation

det[E − H(z)] = 0 ↔ det[T (E)− z] = 0. (4.6)

The relation can be turned into an equality by noting: (i) the characteristic polynomial
det[E−H(z)] has degreeNM in the variableE with coefficient of the highest power equal
to one; (ii) though the transfer matrixT (E) has size 2M, and is obtained as a product of
N matrices linear inE, it can be shown by induction that det[T (E)− z] is a polynomial of
degreeNM in E, with the following coefficient of the highest power inE:

(−z)M det[LN . . . L1]−1. (4.7)

One can, therefore, write the interesting identity

det[T (E)− z] = (−z)M det[LN . . . L1]−1 det[E − H(z)]. (4.8a)
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In this relation we substituteE and z with E∗ and z∗, and take the complex conjugate.
Noting that, by equation (4.4),T (E∗)† is similar to T (E)−1, and H(z∗)† = H(1/z), we
obtain

det[T (E)−1 − z] = (−z)M det[L†
N . . . L

†
1]−1 det[E − H(1/z)]. (4.8b)

Taking the product of determinants (4.8a, b), we obtain a relation which is valuable for
discussing the band structure of the periodic Hamiltonian:

det

[
T (E)+ T (E)−1 −

(
z + 1

z

)]
=

N∏
k=1

| detLk|−2 det[E − H(z)] det

[
E − H

(
1

z

)]
.

(4.8c)

The two determinants in the right-hand side are coincident in the particular but important
cases of periodic and antiperiodic boundary conditionsz = ±1. They always coincide when
the matricesHn andLn are real, since in this caseH(1/z) = H(z)t .

The equation generalizes the result (1.3), contained in [7, 10] for Jacobi matrices,M = 1.
For this case, in the appendix, a useful formula for level velocities is given.

4.2. Level dynamics

The NM eigenvalues ofH(z) are functions of the parameterz whose derivatives have
interesting applications [21–23]. The first derivative is the level velocity, measuring the
current in the ring problem, or being the group velocity in the scattering problem. The
second derivative is the curvature. In this section it is shown that the first derivative, when
the eigenvalueE(z) is real, is an entry of the velocity matrix.

If E is an eigenvalue ofH(z), E∗ is an eigenvalue ofH(1/z∗), since one matrix is the
Hermitian conjugate of the other. Let us write the eigenvalue equations

H(z)ψ = Eψ H(1/z∗)ψ̃ = E∗ψ̃ (4.9)

with eigenvectorsψ = {ψn}Nn=1 and ψ̃ = {ψ̃n}Nn=1. We take the logarithmic derivative of
the first equation(

zL − 1

z
L†

)
ψ + H(z)z d

dz
ψ = z

dE

dz
ψ + E(z)z

d

dz
ψ

and multiply on the left byψ̃†. Using the second eigenvalue equation we obtain

z
dE

dz
(ψ̃†ψ) = ψ̃†

(
zL − 1

z
L†

)
ψ. (4.10)

Let us normalize to one the scalar product in the left-hand side. Due to the simple structure
of the matrixL, the right-hand side simplifies to

zψ̃
†
NLNψ1 − 1

z
ψ̃

†
1L

†
NψN.

Using the boundary conditionsψN = zψ0, ψ̃N = (1/z∗)ψ̃0, and denoting by8 the
eigenvector ofT (E) with eigenvaluez, of componentsψ1 andψ0, and by8̃ the eigenvector
of T (E∗) with eigenvalue 1/z∗, of componentsψ̃1 and ψ̃0, we obtain

z
dE

dz
= ψ̃

†
0LNψ1 − ψ̃

†
1L

†
Nψ0 = −8̃†68. (4.11)

For a real value of the energy, we recognize the non-zero matrix elements of the velocity
matrix (2.14).
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In the casez = eip, the matricesH(eip) andH(e−ip) are Hermitian and each haveNM
real eigenvalues, respectively, described by functionsEj(p) andEj(−p) spanning the same
set ofNM energy bands, asp varies in [−π, π ].

Given an energy valueE inside a band of labelj , recall that the transfer matrixT (E)
admits at least one pair of eigenvalues on the unit circle, eip and eip

′
, such that bothH(eip)

andH(eip′
) have the eigenvalueE: Ej(p) = Ej(p

′) = E, respectively, yielding a positive
and a negative velocity

dEj
dp

(p) = −i8†
j68j = vj

dEj
dp

(p′) = −i8j+M68j+M = v′
j . (4.12)

The velocities describe the istantaneous speeds by which, inE, the bandj is covered in
the two directions. The appearance of 2ν eigenvalues on the unit circle corresponds to the
overlapping inE of ν bands. These properties are now discussed with the help of the dual
identities.

4.3. Band structure of the spectrum

The dual identities (4.8) provide the connection among the eigenvalues of Hamiltonian
matrices and transfer matrices: ifE is an eigenvalue ofH(z), z is an eigenvalue ofT (E)
andz + 1/z is an eigenvalue ofT (E)+ T (E)−1. The latter eigenvalues are useful for the
determination of the band structure of the spectrum of the periodic Hamiltonian.

Taking into account the results of section 2, whenE is real, the matrixT (E)+T (E)−1 =
U(Z + Z−1)U−1 has eigenvalues{

λj (E) = 2 cosp λj+M(E) = 2 cosp′ j = 1 . . . ν

λν+j (E) = ξj + ξ−1
j = λν+j+M(E)∗ j = 1 . . . ρ.

(4.13)

If λj (E) = 2 cosp and 16 j 6 ν, E is an eigenvalue ofH(eip) with positive velocity
vj . On the other hand, there is also a valuep′ such thatE is an eigenvalue ofH(eip′

),
since both phases appear in the spectrum ofT (E). Then, since the latter phase involves a
negative velocity, there is an eigenvalueλj+M(E) = 2 cosp′ with negative velocityvj+M .
The structure of bands is determined by the behaviour of these pairs of eigenvalues, as is
now discussed.

It is convenient to plot the functionsλj (E) in the E–λ plane. Whenz = eip, both
matricesH(z) andH(1/z) are Hermitian and haveNM real eigenvaluesEi(p) andEi(−p).
This implies that the lineλ = 2 cosp must, for anyp, have 2NM intersections with the
graphs of the functionsλj (E). None of such functions can have an extremum inside the
strip |λ| < 2, because this would violate the existence of 2NM intersections for allp.

The strip is then crossed by 2NM lines that correspond to portions of the graphs of an
even number of functionsλj (E).

On the other hand, from the knowledge of the properties ofT (E), if E is any eigenvalue,
it is the projection on theE axis of at least one pair of points, given by the intersections
of the pair of linesλ = λj (E) and λ = λj+M(E), respectively, withλ = 2 cosp and
λ = 2 cosp′. The number of intersections may be greater than two, but always even.

When p = 0 or p = ±π , the eigenvalues of the matricesH(eip) and H(e−ip) are
coincident. TheNM pairs of linesλ = λj (E) and λ = λj+M(E), when reaching from
below the upper border of the stripλ = 2, join at theNM points whose abscissae are the
NM eigenvalues ofH(1). The same pairs join when reaching from above the lower border
λ = −2, in points of abscissa given by the eigenvalues ofH(−1). Between these extrema,
each pairλj andλj+M forms a loop whose projection on theE axis determines a band.
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The equations determining the bands produced by the pair of eigenvaluesλj andλj+M
are two, providing different dynamics for the eigenvalues ofH(eip):

2 cosp = λj (E(p)) p ∈ I± 2 cosp = λj+M(E(p)) p ∈ I∓ (4.14)

whereI+ is the interval 06 p 6 π , andI− is the interval−π 6 p 6 0, and the upper
sign occurs forλ′

j (E) 6 0. The velocities are then respectively positive and negative:

dE(p)

dp
= −2 sinp

(
dλj
dE

)−1

E=E(p)

dE(p)

dp
= −2 sinp

(
dλj+M

dE

)−1

E=E(p)
. (4.15)

This discussion shows that the eigenvalues ofT (E) on the unit circle, as functions ofE, are
naturally paired. This follows from the pairing of the eigenvalues ofT (E)+T (E)−1 in the
strip |λ| 6 2 which is determined by the band structure of the energy. The pairing can be
traced out of the strip, since they become complex conjugated, until eventually re-entering
the strip at a common point.

The case whereT (E) is real is considerably simpler, sincep′ = −p. Then, the lines
(4.14) coincide, and velocities forp > 0 andp < 0 are opposite.

5. The scattering problem

In a scattering problem, the scattering region is confined to a set of blocksn = 1 . . . N ,
outside which we assume, with enough generality, that the infinite matrixH has a constant
structure.

. . . . . . L0

L
†
0 H0 L0

L
†
0 H0 L0

L
†
0 H1 L1

L
†
1 H2 . . .

. . . . . . LN−1

L
†
N−1 HN L0

L
†
0 H0 L0

L
†
0 H0 . . . .

(5.1)

The two infinite tails, which model the ‘leads’, must sustain propagating states which
enable us to construct ingoing and outgoing scattering states. Such states, solutions of
the eigenvalue equation (2.1) in the left- and right-hand sides of the scatterer, are connected
by the transfer matrix for the scattererT (E) = TN(E) . . . T1(E). The matrix depends on the
coupling to the free dynamics, since it contains the matrixL0 in its first and last factor. This
dependence precisely endows the transfer matrix with the property, in general not shared
by the single matrix factors,

T (E)†60T (E) = 60 60 =
(

0 L
†
0

−L0 0

)
(5.2)

where60 is provided by the free part of the Hamiltonian,6†
0 = −60 and det60 6= 0.

5.1. The free dynamics

The preliminary full understanding of the free dynamics is essential for the scattering
problem. We shall find that, at a given energy, the number of open channels, corresponding
to plane waves, is the same for the two directions of motion. In the basis of plane waves,
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the velocity matrix replaces the matrix60, providing the interpretation of the law (2.2) as
flux conservation.

Let us consider the Schrödinger equation with HamiltonianH0, with scatterer removed
and replaced by a sequence ofH0 andL0 matrices:

L
†
0ψn−1(t)+H0ψn(t)+ L0ψn+1(t) = i∂tψn(t). (5.3)

The general solution

ψn(t) =
M∑
j=1

∫ π

−π
dp cj (p)uj (p) ei{np−Ej (p)t} (5.4)

is a linear superposition of plane waves whereuj (p) and Ej(p) are provided by the
eigenvalue problem of the Hermitian matrix, which is the particular caseN = 1 of
equation (4.2b):

{H0 + eipL0 + e−ipL
†
0}uj (p) = Ej(p)uj (p). (5.5)

For anyp there areM real energy valuesEj(p) which are distributed inM bands, and
corresponding orthonormal eigenvectorsuj (p). The bands may overlap, and together
constitute the spectrumS of the free dynamics. The group velocity of a wave packet
is given by

vj (p) = ∂Ej (p)

∂p
= iuj (p)

†(eipL0 − e−ipL
†
0)uj (p). (5.6)

Since bands may overlap for a given allowed valueE of the energy, there are in general
2ν(E) values of momentapj andp′

j , yielding positive and negative velocities, such that
E(pj ) = E(p′

j ) = E. We callν(E) the number of ‘channels’, which counts the number of
propagating states with given energy, in one direction.

However, the transfer matrix approach, which is convenient for the scattering problem,
involves solutions with fixed energy. The general solution (5.4) may be rewritten as

ψn(t) =
∫

S
dE e−iEtψn(E) (5.7)

whereψn(E) is a physical solution of

L
†
0ψn−1(E)+H0ψn(E)+ L0ψn+1(E) = Eψn(E) (5.8a)

and, as such, in the two-vector formalism, is given by

9n(E) = T0(E)
n90 (5.8b)

where90 is a vector with a structure to be discussed later, that ensures the requirement
of providing a ‘physical solution’, andT0(E) is the free transfer matrix evaluated at an
admissible value of the energyE ∈ S

T0(E) =
(
L−1

0 (E −H0) −L−1
0 L

†
0

I 0

)
. (5.9)

Besides physical states, there are also non-physical ones which, when the scatterer is
included in the lattice, must be considered. We, therefore, study the spectral properties
of T0(E). From

T0(E)
†60T0(E) = 60 (5.10)

we know that the spectrum ofT0(E) containsν pairs of non-zero eigenvalues eipj and eip
′
j ,

andρ complex pairsξi and 1/ξ ∗
i , whereν + ρ = M and we assume|ξi | < 1.
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Writing explicitly the eigenvalue equation forT0(E), one finds that the column
eigenvector ofT0(E), with eigenvaluez, has upperM components given by a vectorzu
and lowerM components given byu, solution of the equation with fixedE

H(z)u = Eu H(z) = H0 + zL0 + z−1L
†
0. (5.11)

In particular, we have theν pairs of eigenvectorsuj and u′
j of equation (5.5), with

eigenvalues eipj and eip
′
j . The remaining pairsξi and 1/ξ ∗

i , with |ξi | < 1, have eigenvectors
wi andw′

i . From equation (5.11) and the reality ofE, we immediately obtain the property
that bothξi(w

†
i L0wi) and 1/ξ∗

i (w
′
i
†L0w

′
i ) are real. Therefore, in the caseL0 = L

†
0, the

eigenvalues ofT0(E) that are not on the unit circle, are real.
Let us introduce the ordering (2.9) of eigenvalues and eigenvectors. ThenT0(E) =

UZU−1 with

Z =
(
Z1 0
0 Z2

)
(5.12a)

Z1 =


eip1

. . .

eipν

. . .

ξρ

 Z2 =


eip′

1

. . .

eip′
ν

. . .

1/ξ ∗
ρ

 (5.12b)

andU is the matrix of column eigenvectors, built from the eigenvectors of (5.11):

U =
(
U1Z1 U2Z2

U1 U2

)
U1 =(u1 . . . uν, w1 . . . wρ)

U2 =(u′
1 . . . u

′
ν, w

′
1 . . . w

′
ρ).

(5.13)

The general solution of (5.8) is then

ψn(E) =
ν∑
j=1

(a
(ν)
j eipjnuj + b

(ν)
j eip′

j nu′
j )+

ρ∑
j=1

(a
(ρ)

j ξnj wj + b
(ρ)

j (ξ ∗
j )

−nw′
j ). (5.14)

The first sum involves physical states with positive and negative velocities, that contribute
to propagation. The second sum is divergent for an unbounded chain, but once the scatterer
is in place, it will provide exponential tails leaving the scatterer. In the compound notation,
introducing a vector of 2M amplituesA, the solution (5.14) gains a compact form:

9n = UZnA A =
(
a

b

)
a =

(
a(ν)

a(ρ)

)
b =

(
b(ν)

b(ρ)

)
. (5.15)

From the spectral decomposition of the transfer matrixT0(E) = UZU−1, and the property
(5.10) which also holds for powers of the transfer matrix, we construct the velocity matrix

�0 = −iU †60U (Z†)n�0Z
n = �0. (5.16)

The diagonal elementsvi andv′
i are precisely the positive and negative group velocities of

the channels with momentapi andp′
i .

In the case thatH0 and L0 are real matrices we havep′ = −p, the energies are
symmetric functions of the momentumEj(p) = Ej(−p), and accordinglyvj = −v′

j . This
corresponds to the property of time-reversal invariance of the free dynamics. Note that
u′
j = u∗

j , by taking the transposed of equation (5.5).
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5.2. Current conservation

When the scatterer is included, the solutions of the eigenvalue equation (2.1) at the left and
the right of the scatterer may contain a contribution that decays exponentially away from
the scatterer. In the compound notation, the left and right solutions are of the type (5.15)

9L
n = UZnAL AL =

(
a

b

)
a(ρ) = 0 n 6 0 (5.17a)

9R
m = UZmAR AR =

(
c

d

)
d(ρ) = 0 m > N. (5.17b)

The restrictions are needed to avoid the exponentially diverging parts, and are responsible
for an interesting interpretation of the conservation law

(9L
n )

†609
L
n = (9R

m)
†609

R
m.

In terms of amplitudes they read

(AL)†�0A
L = (AR)†�0A

R. (5.18)

Specifying the components, we obtain a law of current conservation, where no contribution
comes from the non-propagating sector:

ν∑
j=1

(|a(ν)j |2vj + |b(ν)j |2v′
j ) =

ν∑
j=1

(|c(ν)j |2vj + |d(ν)j |2v′
j ). (5.19)

The left and right vectors are related by the transfer matrix of the scatterer9R
N = T (E)9L

0 .
For the amplitudes we obtain the linear relation

AR = M(E)AL M(E) = Z−NU−1T (E)U (5.20)

where bothM(E) andU−1T (E)U have the property

M(E)†�0M(E) = �0. (5.21)

5.3. The transmission and reflection matrices

Since some components in the amplitude vectorsAR andAL have value zero and, moreover,
we are not interested in the amplitudes of exponential tails, only a reduced transfer matrix
is required for the computation of scattering quantities. Let us introduce the partitions

M(E) =
(
M1 M2

M3 M4

)
Mk =

(
Mνν
k M

νρ

k

M
ρν

k M
ρρ

k

)
(5.22)

where, for example,Mνν
k is the submatrix of sizeν×ν of Mk. From the relationAR = MAL

we obtain the linear relation for the scattering components:(
c(ν)

d(ν)

)
= MS

(
a(ν)

b(ν)

)
MS =

(
Mνν

1 −M
νρ

2 (M
ρρ

4 )
−1M

ρν

3 Mνν
2 −M

νρ

2 (M
ρρ

4 )
−1M

ρν

4
Mνν

3 −M
νρ

4 (M
ρρ

4 )
−1M

ρν

3 Mνν
4 −M

νρ

4 (M
ρρ

4 )
−1M

ρν

4

)
. (5.23)

If all channels are open, the matrixMS coincides withM. As a consequence of
equation (5.19), the matrixMS has the property

M
†
S

(
v 0
0 v′

)
MS =

(
v 0
0 v′

)
(5.24)
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wherev andv′ are the diagonal matrices of the positive and negative velocities, respectively.
The matrix blocks ofMS are directly related to the transmission matrixt̃ and the reflection
matrix r̃ for amplitudes. In the scattering processes with incoming wave from the left and
from the right respectively, we define

c(ν) = t̃La(ν) d(ν) = 0 b(ν) = r̃La(ν) (5.25a)

c(ν) = r̃Rd(ν) a(ν) = 0 b(ν) = t̃Rd(ν). (5.25b)

To obtain a unitary scattering matrix, or define the conductance of the scatterer, one must
consider the amplitudes of the incoming and outgoing fluxes in the various open channels,
at the left and the right of the scatterer:

j
in,L
i = a

(ν)
i

√
vi j

out,L
i = b

(ν)
i

√
−v′

i

j
out,R
i = c

(ν)
i

√
vi j

in,R
i = d

(ν)
i

√
−v′

i . (5.26)

The flux amplitudes are related by the transfer matrix

F = 0MS0
−1 0 =

( √
v 0

0
√−v′

)
(5.27a)

with the symplectic property corresponding to flux conservation

F †σ3F = σ3 σ3 =
(
I 0
0 −I

)
. (5.27b)

The matrixF is the canonical transfer matrix for the computation of transport quantities, like
conductance [24, 25], since it takes into account the channel velocities and the possibility
of closed channels.

From the matrixF one obtains the transmission and reflection matrices for flux
amplitudes, which enter as blocks in a unitary scattering matrix, and are simply related
to those for amplitudes (5.25)

tL = v−1/2t̃Lv1/2 rL = (−v′)−1/2r̃Lv1/2 (5.28a)

tR = (−v′)−1/2t̃R(−v′)1/2 rR = v−1/2r̃R(−v′)1/2. (5.28b)

6. Conclusions

The motivation of this paper was to identify and study some basic ingredients common
to many mathematical models for the description of quantum transport of a single particle
in the presence of disorder. The process of ensemble average is usually a forward step
that follows the identification of observable quantities that pertain to the single specimen.
A single general Hamiltonian matrix with tridiagonal structure made of square blocks has
therefore been considered. Some results of this paper, being very general, may also prove
useful for other physical applications.

The relationship between the energy spectrum with the spectrum of the corresponding
transfer matrix has been investigated, deriving ‘dual identities’ (4.8) among the characteristic
polynomials of the two matrices, in the case of periodic boundary conditions, generalizing
an identity known for the one-dimensional case [7, 10]. These relations allow the study of
the band structure of the Hamiltonian and the level dynamics, which relates to observable
quantities of the system, is relevant for the Thouless approach to conductance and, by
taking ensemble average over disorder, have interesting universal properties for velocity
correlations and curvatures [23]. It is hoped that the dual identities may be useful in the
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study of the difficult and important problem of the statistical properties of transfer matrix
eigenvalues, given those of the Hamiltonian.

It has been shown that, for closed, periodic or scattering boundary conditions, the transfer
matrix of the whole chain has a generalized symplectic property, which generally does not
hold for the single one-step factors of the transfer matrix. This property allows one to
construct a Hermitean velocity matrix, with an even number of non-zero diagonal elements
providing pairs of level velocities with opposite sign. In a scattering process they coincide
with group velocities of wave packets travelling in opposite directions. The velocity matrix
enters in the relation giving the generalized symplectic property for the transfer matrix for
scattering amplitudes both for closed (non-propagating) and open channels. The procedure
to restrict the transfer process to open channels only has been shown, in accordance with
the usual scattering matrix approach.
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Appendix

When the blocks are not matrices but numbers (M = 1), we recover the usual Jacobi
matrices of one-dimensional models. The transfer matrix is a 2× 2 matrix. Letting the
off-diagonal elements in the Hamiltonian be all equal to 1 for simplicity, the dual relation
(4.8) with z = eip gives equation (1.3), obtained by Last [7]. With simple steps, one can
obtain the level velocities and the curvatures in the origin:

vi(p) = dEi
dp

= − sinp∏′
j [Ei(p)− Ej(p)]

Ki(0) = d2Ei

dp2
(0) = − 1∏′

j [Ei(0)− Ej(0)]
. (A.1)

The expression of curvature coincides with the productψ1ψN of the first and last components
of the eigenvectorψ of the matrixH(0) with energyEi [12] and explains the meaning of
curvature or of the bandwidth, to which curvature is related, as measures of localization [8].
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